skip to main content


Search for: All records

Creators/Authors contains: "Metcalf, C. Jessica"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Host genetics can shape microbiome composition, but to what extent it does, remains unclear. Like any other complex trait, this important question can be addressed by estimating the heritability (h2) of the microbiome—the proportion of variance in the abundance in each taxon that is attributable to host genetic variation. However, unlike most complex traits, microbiome heritability is typically based on relative abundance data, where taxon-specific abundances are expressed as the proportion of the total microbial abundance in a sample.

    Results

    We derived an analytical approximation for the heritability that one obtains when using such relative, and not absolute, abundances, based on an underlying quantitative genetic model for absolute abundances. Based on this, we uncovered three problems that can arise when using relative abundances to estimate microbiome heritability: (1) the interdependency between taxa can lead to imprecise heritability estimates. This problem is most apparent for dominant taxa. (2) Large sample size leads to high false discovery rates. With enough statistical power, the result is a strong overestimation of the number of heritable taxa in a community. (3) Microbial co-abundances lead to biased heritability estimates.

    Conclusions

    We discuss several potential solutions for advancing the field, focusing on technical and statistical developments, and conclude that caution must be taken when interpreting heritability estimates and comparing values across studies.

     
    more » « less
  2. As the SARS-CoV-2 trajectory continues, the longer-term immuno-epidemiology of COVID-19, the dynamics of Long COVID, and the impact of escape variants are important outstanding questions. We examine these remaining uncertainties with a simple modelling framework that accounts for multiple (antigenic) exposures via infection or vaccination. If immunity (to infection or Long COVID) accumulates rapidly with the valency of exposure, we find that infection levels and the burden of Long COVID are markedly reduced in the medium term. More pessimistic assumptions on host adaptive immune responses illustrate that the longer-term burden of COVID-19 may be elevated for years to come. However, we also find that these outcomes could be mitigated by the eventual introduction of a vaccine eliciting robust (i.e. durable, transmission-blocking and/or ‘evolution-proof’) immunity. Overall, our work stresses the wide range of future scenarios that still remain, the importance of collecting real-world epidemiological data to identify likely outcomes, and the crucial need for the development of a highly effective transmission-blocking, durable and broadly protective vaccine.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract

    The absence of microbial exposure early in life leaves individuals vulnerable to immune overreaction later in life, manifesting as immunopathology, autoimmunity, or allergies. A key factor is thought to be a “critical window” during which the host's immune system can “learn” tolerance, and beyond which learning is no longer possible. Animal models indicate that many mechanisms have evolved to enable critical windows, and that their time limits are distinct and consistent. Such a variety of mechanisms, and precision in their manifestation suggest the outcome of strong evolutionary selection. To strengthen our understanding of critical windows, we explore their underlying evolutionary ecology using models encompassing demographic and epidemiological transitions, identifying the length of the critical window that would maximize fitness in different environments. We characterize how direct effects of microbes on host mortality, but also indirect effects via microbial ecology, will drive the optimal length of the critical window. We find that indirect effects such as magnitude of transmission, duration of infection, rates of reinfection, vertical transmission, host demography, and seasonality in transmission all have the effect of redistributing the timing and/or likelihood of encounters with microbial taxa across age, and thus increasing or decreasing the optimal length of the critical window. Declining microbial population abundance and diversity are predicted to result in increases in immune dysfunction later in life. We also make predictions for the length of the critical window across different taxa and environments. Overall, our modeling efforts demonstrate how critical windows will be impacted over evolution as a function of both host-microbiome/pathogen interactions and dispersal, raising central questions about potential mismatches between these evolved systems and the current loss of microbial diversity and/or increases in infectious disease.

     
    more » « less
  4. Abstract

    The potential for climate change to exacerbate the burden of human infectious diseases is increasingly recognized, but its effects on infectious diseases of plants have received less attention. Understanding the impacts of climate on the epidemiological dynamics of plant pathogens is imperative, as these organisms play central roles in natural ecosystems and also pose a serious threat to agricultural production and food security. We use the fungal ‘flax rust’ pathogen (Melampsora lini) and its subalpine wildflower host Lewis flax (Linum lewisii) to investigate how climate change might affect the dynamics of fungal plant pathogen epidemics using a combination of empirical and modeling approaches. Our results suggest that climate change will initially slow transmission at both the within- and between-host scales. However, moderate resurgences in disease spread are predicted as warming progresses, especially if the rate of greenhouse gas emissions continues to increase at its current pace. These findings represent an important step towards building a holistic understanding of climate effects on plant infectious disease that encompasses demographic, epidemiological, and evolutionary processes. A core result is that neglecting processes at any one scale of plant pathogen transmission may bias projections of climate effects, as climate drivers have variable and cascading impacts on processes underlying transmission that occur at different scales.

     
    more » « less
  5. Inferring the relative strength (i.e. the ratio of reproduction numbers) and relative speed (i.e. the difference between growth rates) of new SARS-CoV-2 variants is critical to predicting and controlling the course of the current pandemic. Analyses of new variants have primarily focused on characterizing changes in the proportion of new variants, implicitly or explicitly assuming that the relative speed remains fixed over the course of an invasion. We use a generation-interval-based framework to challenge this assumption and illustrate how relative strength and speed change over time under two idealized interventions: a constant-strength intervention like idealized vaccination or social distancing, which reduces transmission rates by a constant proportion, and a constant-speed intervention like idealized contact tracing, which isolates infected individuals at a constant rate. In general, constant-strength interventions change the relative speed of a new variant, while constant-speed interventions change its relative strength. Differences in the generation-interval distributions between variants can exaggerate these changes and modify the effectiveness of interventions. Finally, neglecting differences in generation-interval distributions can bias estimates of relative strength. 
    more » « less
  6. Abstract

    Microbial communities associated with plant leaf surfaces (i.e., the phyllosphere) are increasingly recognized for their role in plant health. While accumulating evidence suggests a role for host filtering of its microbiota, far less is known about how community composition is shaped by dispersal, including from neighboring plants. We experimentally manipulated the local plant neighborhood within which tomato, pepper, or bean plants were grown in a 3-month field trial. Focal plants were grown in the presence of con- or hetero-specific neighbors (or no neighbors) in a fully factorial combination. At 30-day intervals, focal plants were harvested and replaced with a new age- and species-matched cohort while allowing neighborhood plants to continue growing. Bacterial community profiling revealed that the strength of host filtering effects (i.e., interspecific differences in composition) decreased over time. In contrast, the strength of neighborhood effects increased over time, suggesting dispersal from neighboring plants becomes more important as neighboring plant biomass increases. We next implemented a cross-inoculation study in the greenhouse using inoculum generated from the field plants to directly test host filtering of microbiomes while controlling for directionality and source of dispersal. This experiment further demonstrated that focal host species, the host from which the microbiome came, and in one case the donor hosts’ neighbors, contribute to variation in phyllosphere bacterial composition. Overall, our results suggest that local dispersal is a key factor in phyllosphere assembly, and that demographic factors such as nearby neighbor identity and biomass or age are important determinants of phyllosphere microbiome diversity.

     
    more » « less
  7. null (Ed.)
    SARS-CoV-2 is an international public health emergency; high transmissibility and morbidity and mortality can result in the virus overwhelming health systems. Combinations of social distancing, and test, trace, and isolate strategies can reduce the number of new infections per infected individual below 1, thus driving declines in case numbers, but may be both challenging and costly. These interventions must also be maintained until development and (now likely) mass deployment of a vaccine (or therapeutics), since otherwise, many susceptible individuals are still at risk of infection. We use a simple analytical model to explore how low levels of infection, combined with vaccination, determine the trajectory to community immunity. Understanding the repercussions of the biological characteristics of the viral life cycle in this scenario is of considerable importance. We provide a simple description of this process by modelling the scenario where the effective reproduction number R eff is maintained at 1. Since the additional complexity imposed by the strength and duration of transmission-blocking immunity is not yet clear, we use our framework to probe the impact of these uncertainties. Through intuitive analytical relations, we explore how the necessary magnitude of vaccination rates and mitigation efforts depends crucially on the durations of natural and vaccinal immunity. We also show that our framework can encompass seasonality or preexisting immunity due to epidemic dynamics prior to strong mitigation measures. Taken together, our simple conceptual model illustrates the importance of individual and vaccinal immunity for community immunity, and that the quantification of individuals immunized against SARS-CoV-2 is paramount. 
    more » « less
  8. null (Ed.)
    Vaccines provide powerful tools to mitigate the enormous public health and economic costs that the ongoing SARS-CoV-2 pandemic continues to exert globally, yet vaccine distribution remains unequal among countries. To examine the potential epidemiological and evolutionary impacts of ‘vaccine nationalism’, we extend previous models to include simple scenarios of stockpiling between two regions. In general, when vaccines are widely available and the immunity they confer is robust, sharing doses minimizes total cases across regions. A number of subtleties arise when the populations and transmission rates in each region differ, depending on evolutionary assumptions and vaccine availability. When the waning of natural immunity contributes most to evolutionary potential, sustained transmission in low access regions results in an increased potential for antigenic evolution, which may result in the emergence of novel variants that affect epidemiological characteristics globally. Overall, our results stress the importance of rapid equitable vaccine distribution for global control of the pandemic. 
    more » « less
  9. Sills, Jennifer (Ed.)